Morotsflugan
Rapport från projektet
"Integrerat växtskydd i grönsaker på friland"

Skaraborg Rapport 2_2013
Christina Marmolin, Stina Andersson och Anna-Mia Björkholm
Sammanfattning

Morotsflugan är en besvärlig skadegörare på morötter och andra flockblomstriga växter. Som rådgivare har vi under de senaste åren sett enökning av morotsflugan i områden med intensiv morotsodling. I detta projekt har vi tittat på olika delar i en integreradbekämpning av morotsflugan. Delarna som ingått är utvecklingsmöjligheter för olika prognosverktyg, klimatbaserat program, övervakning i fält med gula klisterskivor samt förebyggande åtgärder.

Daggradsmodellen som länge använts i Sverige utgår från aktuella väderdata, vilket gör att man inte i förväg har möjlighet att avgöra om det föreligger ettbekämpningsbehov. I detta projekt har modellen utvecklats genom att kompletteras med medeltemperaturdata från de senaste åren. Den utvecklade modellen ger ett bättre beslutsunderlag genom att simulera när morotsflugan mest troligt angriper morötterna. Därigenom ger den möjligheten att göra en bedömning om morötterna kan skördas före angrepp på roten eller om det finns behov av bekämpning.

Övervakning i fält med gula klisterskivor görs på de flesta platser i Europa. Däremot varierar antal fallor och placeringen av fallor i fält. Forskning har visat att vid användning av vinklade fallor (45°) fångas fler flugor än när fallorna placeras vertikalt. I Skåne utfördes en demonstration under 2012, med vinklade fallor i två fält och på två platser per fält för att prova detta. På båda platserna fångades fler flugor med vinklade fallor i början av avläsningsperioden. Senare under perioden var skillnaderna inte lika tydliga.

Tidigare har ett tröskelvärde på 0,2 flugor per dag och fälla rekommenderats. Under omständigheter med tillgång på bara kontaktverkande preparat får kanske ett annat tankesätt tillämpas. En individuell bedömning bör göras för respektive område
utifrån hur intensiv odlingen är i området, hur nära fälten ligger varandra, om halmade fält finns etc. I områden med ”hög risk” bör man placera fler, gärna vinklade, fållor per fält samt använda en lägre bekämpningströskel. I områden med ”låg risk” kan samma metod som tidigare användas.

Innehåll

Bakgrund ... 7
Biologi .. 8
Livscykel ... 9
Symptom och skadebild .. 11
Beslutsstöd .. 14
Övervakning av morotsflugan genom gula klisterskivor i Sverige... 14
Övervakning av morotsflugan genom gula klisterskivor i Europa... 14
Övervakning genom Daggradsmodellen ... 15
Förebyggande åtgärder ... 15
Bekämpning ... 17
Bekämpning Sverige .. 17
Bekämpning Europa .. 17
De Groene Vlieg... 18
Betning .. 19
Del 1. Vidareutveckling av befintlig prognosteknik... 20
Demo med vinklade gula klisterskivor ... 20
Nuvarande “Daggradsmodellen” ... 21
Utveckling av ”daggradsmodell” - skördeprognos .. 22
Del 2. Klimatbaserad prognosmodell för att beräkna när första generationens morotsfluga börjar flyga ... 23
SWAT-modellen (Tyskland) ... 23
UK-Modell, MORPH ... 24
Slutsats kring simuleringsmodeller och daggradsmodellen.. 24
Förslag på beslutsvägar och val av åtgärd ... 25
Diskussion .. 28
Källor .. 30
Litteratur .. 30
Personliga meddelanden .. 31
Websidor .. 32
Bilaga 1 .. 33
Utveckling av daggradsmodell .. 33
Förslag till förbättringar ... 34
Bilaga 2 ... 36
Bakgrund

Morotsflugan, *Psilia rosae*, är en besvärlig skadegörare på morötter och även på andra flockblomstriga växter, t.ex. selleri, palsternacka, och rotpersilja. Vi har i detta arbete valt att fokusera på morotsfluga som skadegörare i morot men åtgärderna är i de flesta fall överförbara på andra flockblomstriga grödor.

Morotsflugan följs vanligen med hjälp av gula klisterfällor och bekämpas när bekämpningströskeln har uppnåtts (0,2 flugor per dag och fälla). Som rådgivare har vi under senaste åren sett en ökning av morotsflugan speciellt i områden med intensiv morotsodling, vilket även styrks av växtskyddcentralen i Alnarp. I många fall kan bekämpningsinsats undvikas genom att morötterna plockas upp innan flugans larver gör skada. Det är känt att morotsflugans larver gör skada på roten då 500 daggrader uppnåtts sedan äggläggningen.

Prognostekniken för morotsflugan är känd men har på senare tid utvecklats vilket vi i Sverige inte tagit till oss. Tillämpningen av klisterkvadrer har utvecklats i bl a Tyskland, Holland och England och man har idag andra riktlinjer för användning än de som vi i Sverige hittills har använt. För ett lyckat resultat med behovsanpassad bekämpning av morotsflugan är det av yttersta betydelse att vi använder bästa prognosteknik.

Fram tills idag har prognosmodellen med gula klisterfällor haft sin grund i att näringen har haft möjlighet att använda systemiskt verkande insekticider. Frågan är om det nu, då systemiska preparat troligtvis försvinner, räcker att sätta ut klisterkvadrer och bekämpa då man når tröskelvärdet 0,2 flugor per dag och fälla.

Första generationens flugor orsakar i vissa områden problem i tidigt sådda morötter. En klimatbaserad modell för när första generationens morotsflugor börjar flyga har i andra länder visat sig effektiv och används även för att prognostisera när andra och ev. tredje generationens morotsfluga börjar flyga. Information om olika klimatbaserade prognosmodeller samt bedömning av om de kan användas för att förbättra insatserna då det gäller behovsanpassad bekämpning av morotsflugan har ingått i detta projekt.

Biologi

Morotsflugan hittas i nästan alla fält varje år även om intensiteten varierar. De största problemen finns i områden med intensiv morotsproduktion.

Morotsflugan är en rotfluga med ett karaktäristiskt utseende.

- Stort huvud och mellankropp med en slank bakkropp
- Rödaktigt huvud
- 5–7 mm lång
- Svartglänsande kropp med en starkt insnörpt midja
- Gula ben

![Bild 1](image-url). Karacteristiskt för morotsflugan är dess gula ben samt runda lätt orangefärgade huvud. (foto: Stina Andersson)
Honans bakkropp är tillspetsad och bakre delen är utformad till äggläggningsrör. Hanens bakkropp är mörkare än honans och mer avrundad (11). Äggen är små (0,6-0,7 mm) vita och ovala. Larven är utan ben och utan tydligt huvud, larven kan som fullvuxen bli ca 1 cm. Puppan är gulbrun (5 mm).

Livscykel

![Diagram](image)

Figur 1. Diagrammet visar hur morotsflugans generationer ser ut i olika delar av landet.

Andra generationen förekommer från slutet av juli ända in i september. Överläppningen mellan generationerna är stor. Varma höstrar kan ge en tredje generation i Göteborg, larver av tredje generationen hinner vanligtvis inte göra några skador.

Bild 2. Morotsflugans larv gör rostbruna gångar. Larv i tredje larvstadiet kan ses på övre delen av moroten. (foto Stina Andersson)

Morotsflugan övervintrar i jorden som puppa men på halmade morötter övervintrar morotsflugan både som larv och puppa (6).

Vid allt för höga temperaturer (över 28 ºC) kan puppans utveckling fördöjas och därmed senarelägga nästa generation. (7). Dödligheten på ägg och larver kan vara stor om det blir perioder med varmt och torrt väder, över 30ºC (4).

Morotsflugan är en förhållandevis dålig flygare (18). Försök under 2000-talet i England har visat att mycket få morotsflugor flyger mer än 1 km från den plats där de kläckts (6). De kan inte heller förflytta sig längre än 100 m per dag (4).
Morotsflugans beteende

Figur 2. Angreppsmönstret för morotsfluga visar en markant kanteffekt. Figuren visar att skadan minskar med ökande avstånd från kantvegetationen (2).

Symptom och skadebild

Beroende på i vilket stadium morötterna befinner sig i ger larven olika symptom och skada. Vid tiden då första generationen uppträder har morötterna kommit olika långt i utveckling beroende på fält, sort och såtidpunkt.

Angrepp av första generationen

Angrepp av andra generationen

På större morotsplantor börjar larven att äta på sidorötterna men går så småningom (tredje larvstadiet) in i huvudroten och gör slingriga gångar som får en rostbrun färg (därav det amerikanska namnet Carrot Rust Fly).

Bild 3. Angrepp av morotsflugans larver på persilja. Här syns tydligt de rostfärgade gångarna. (foto Stina Andersson)

Lagrade morötter

Morötter som lagras och är angripna av morotsflugan kan få stora kvalitetsproblem. Inte bara av larvskadan som i sig klassas som kvalitetproblem utan larvskadan kan även agera inkörsport för bakterier och svampar, lagringssjukdomar kan få fäste och utvecklas kraftigare i lagret under lagringstiden. Angripna rötter får ofta en bitter smak.

Lagring av morötter under halm

Under de senaste åren har lagring av morötter i fält under halm ökat i södra Sverige. Morotsflugans larver kan här fortsätta att äta på roten under halmtäcket och orsaka stor kvalitetsskada.

Bild 4. Översta bilden visar angrepp av morotsflugans larv. Vanligtvis görs gångarna på nedre delen av roten, där det ofta uppstår sekundär röta i gångarna. Bör inte förväxlas med angrepp från morotsminerarflugans larver som gör torra ytliga gångar på övre delen av moroten se nedersta bilden. (foto Stina Andersson)
Beslutsstöd

Olika prognosmodeller har utvecklats som underlag för att veta när morotsflugan ska bekämpas.

Övervakning av morotsflugan genom gula klisterskivor i Sverige

I Sverige övervakas morotsflugan via gula klisterskivor, nedan kallade fällor. Växtskyddscentralen Alnarp avläser några referensfält och meddelar genom rådgivningsbrev när flygningen börjar i olika områden. För optimal bedömning av bekämpningsbehov krävs övervakning på fältnivå.

Antalet fällor per fält kan variera mellan 1 och 5 stycken. Vanligast är 2-3 fällor per fält. Är fälten mycket stora, 15-20 ha, sätts fler fällor ut. Fällorna placeras längs med busk- och trädridåer ca 2-10 m in i fältet. Fällorna sitter helt upprätt utan lutning, fällans underkant ska sitta i höjd med blasttopparna. Fällorna läses av en gång per vecka.

Idag är bekämpningströskeln 0,2 flugor per dag och fälla och baserad på bekämpning med Danadim progress. Tidigare har bekämpningströskeln legat på 1 fluga på dag och fälla och var då anpassad till bekämpningsstrategi med Roxion (dimetoat 500 g/l), som hade en högre halt av aktiv substans än Danadim program (dimetoat 400 g/l). Vid förändrad tillgång på kemiskapreparat kan bekämpningströskeln förändras igen.

Vid morötter till industri (där morötterna vanligen skalas) kan en något högre tolerans för angrepp accepteras jämfört med produktion för direktkonsumtion.

Övervakning av morotsflugan genom gula klisterskivor i Europa

Morotsflugan övervakas i nästan alla länder i Europa med någon typ av gula klisterskivor.
Lutning av fällan i 45°

Antalet fällor per fält, placering och avläsning

Antalet fällor per fält varierar från 1 till över 10. Vanligen är antalet runt 5 fällor. Fällorna avläses 1-2 gånger i veckan (5). I Holland, finns etablerade företag som erbjuder tjänster med avläsning av fällor och rekommendationer för bekämpning, se mer under rubriken De Groene Vlieg, nedan.

Hur nära fältkanten fällan ska placeras varierar också allt från 0,5 m till 10 m in i fält. Läs mer om länders olika strategier för att kontrollera morotsflugan i bilaga 2.

Ett mycket enkelt sätt att prognostisera när första flugan flyger är att sätta upp fällor i övervintrade morotsfält med halm. När första flugan fångas där vet man att flugorna är på gång och man bör vara observant i andra fält (i).

Övervakning genom Daggradsmodellen

Förebyggande åtgärder

Genom olika förebyggande åtgärder är det möjligt att minska angrepp av morotsflugan och därigenom behovet av kemisk bekämpning.

Växtföljd. Precis som i all annan grönsaksodling bör en god växtföljd tillämpas. Minst 4 år mellan kulturer inom morotsfamiljen (morot, palsternacka, selleri, fänkål, persilja, persiljerot osv), helst längre.

Välj öppna blåsiga fält, eftersom flugan inte trivs i blåsiga lägen.

Minst 500 meter till fjolårsfältet eller fält med tidiga morötter. Morotsflugan flyger inga längre sträckor, ju längre avstånd desto bättre (h).
Undvik tidig sådd om möjligt. Försök visar att morötter sådda i juni fick mycket lägre angrepp än fält sådda i mars-april. Även fält sådda i slutet av maj hade avsevärt lägre angrepp än fält sådda i mars-april (6).

Planera fältet vid sådd. Om det finns träd- och buskridåer längs någon fältkant är det lämpligt att så längs med denna kant samt göra följande insatser.

- Använd ”daggradsmodellen” och planera in skörd längs med denna fältkant innan flugans larv gör skada på roten. Kemisk bekämpning kan då uteslutas. Resterande del av fältet kan skördas senare utan risk för stora angrepp.

- Bekämpa endast 10-20 m in i fält. Eftersom morotsflugan vanligen håller sig längs med fältkanten. Se figur 1.

- Beta utsätde längs denna kant 10-20 m in i fält. Denna åtgärd minskar angrepp av första generation och en lägre mängd aktiv substans åtgår jämfört med att beta hela fältet.

Upptagning av morötter efter daggradsmodell. Läs mer under rubrik daggradsmodellen.

Täckning med insektnät. Insektnätet kan läggas på efter sådd eller senare. Viktigt är att fältet täcks innan morotsflugan börjar flyga. Om nätet inte läggs på förrän till andra generationens morotsfluga är det viktigt att första generationen fluga bekämpas med insekticid, är fältet sätt efter första generationen avslutat sin flygning är detta inget problem (6). Vid täckning med insektnät behövs vanligen mekanisk radhackning utföras för att undvika att flugan flyger in i fält och lägger ägg bör detta moment utföras på förmiddagen, eftersom flugan flyger ut i fältet under eftermiddag - kväll (h).

Undvik lagring under halm, eftersom detta medför att ägg och larver från den sena andra generationen har möjlighet att utvecklas och övervintra som larv eller puppa under halmen (II.).

”Alternativa åtgärder”

Olika typer av alternativa åtgärder studeras. Flertalet av dessa kräver mer forskning och utveckling för att bli användbara.

Fysiska barriärer som nät, vertikala alternativt horisontella. Vertikala nät har inte visat på någon god effekt. Däremot fungerar horisontella nät bra förutsatt att nätet läggs på innan flugan börjar flugan samt att inga puppor av morotsflugan finns i jorden (22).

Resistenta sorter, förädlning har pågått under lång tid. Det finns ett antal sorter som har något bättre tolerans mot morotsflugan. Förädlarna nämner att 30% mindre skada kan åstadkommas, men där är inga effekter på skördens vilket medfört att dessa sorter inte fått kommersiellt genomslag(I.).
Samodling. Olika typer av grödor odlas tillsammans med morötterna, antingen helt nära morotsplantan som någon typ av undervegetation eller som ytterligare en kulturgröda mellan morotsraderna som också skördas.

Repellerande substanser. Typ feromoner osv.

Biologisk bekämpning med svampar och insekter (20).

Bekämpning

Bekämpning Sverige

Bekämpning sker vid uppnådd bekämpningströskel.

Följande preparat varit godkända för användning i morötter och palsternacka 2012, Karate 2,5 WG (lambda-cyhalothrin), Mavrik 2F (tau-fluvanilate). I morötter även Danadim Progress (dimetoat). Danadim progress har inget fortsatt godkännande.

I ekologisk odling används senare sådd för att undvika första generationens morotsfluga. För att undvika problem med andra generationen har daggradsmodellen praktiserats med skörd innan morotsflugans larv hunnit göra skada.

Täckning med insektnät har inte praktiserats i någon större skala. Vi användning av nät är det viktigt att detta läggs på innan flugan börjar flyga.

Bekämpning Europa

I Europa har man olika tröskelvärden för bekämpning beroende på vilken generations flugor, storlek på morotsplantan, tidigare bekämpning, betat utsäde, jordbehandling, tillgång på bekämpningsmedel samt till vilken typ av marknad som grödan produceras (5). Vid morötter till industri (där morötterna vanligen skalas) kan en något högre tolerans för angrepp accepteras jämfört med produktion för direkt konsumtion.

I Storbritannien har man inget tröskelvärde utan bekämpning utförs när första fluyan fångats. I UK har endast lambda-cyhalothrin (Karate) varit godkänt sedan de organiska fosforföreningarna (typ dimetoat) blev förbjudna för ca 10 år sedan. Bekämpning med Karate eller annan pyretoïd rekommenderas på eftermiddagen då flugan är aktiv, optimalt mellan 16.00 - 18.00. Chlorantraniliprole (Coragen 20 SC) fick ett off-label godkännande 2012 (j).
Tyskland har olika tröskelvärden för första och andra generationen, 1 fluga per dag och fälla respektive 2 flugor per dag. Tyskland har tillgång till dimetoat (Danadim Progress) fram till 2016, även Karate och Fastac (alfacypermetrin) är godkänt (19). Martin Hommes (g) nämner precis som Collier (i) att timing (bekämpning på eftermiddagen mellan 16.00 och 18.00) är extra viktig vid bekämpning med pyretroid (t.ex. Karate, Fastac och Mavrik). Eftersom morotflugan flyger in i fält och lägger ägg på eftermiddag-kväll bör bekämpningen utföras då för att få bästa effekt (h).

Bekämpningsintervall

Temperaturen har stor betydelse för hur länge man kan räkna med effekt från pyreroider. Vanligen brukar intervallet på bekämpning av pyretroid ligga på 10-14 dagar. Försök i Storbritannien visar att vid första generationens morotsflugan finns effekten av, i detta fall, Karate kvar ca 10 dagar i maj månad med max/min temperatur 18°C/8°C. Senare på säsongen när andra generationens morotsfluga är aktiv i juli-augusti varade effekten endast i 7 dagar vid max/min temperatur 23°C/11°C, vid ännu högre temperaturer varar effekten ännu kortare tid. Försöken visade också att Karate blev regnfast omedelbart efter behandling (6).

De Groene Vlieg

Det holländska företaget ”De Groene Vlieg” www.degroenenvlieg.nl producerar sterila lökflugor samt erbjuder bland annat prognos för lökfluga och morotsfluga.

Odlarna kan abonnera på ”prognos av morotsflugan”. Företaget sköter då utsättning, avläsning av fällor i fält samt ger rekommendationer när det är aktuellt att bekämpa.

Företaget använder sig av vinklade fällor, 45° som endast fångar flugor på klisterskivans undersida. Fyra vinklade fällor per 6 ha placeras ut som ett set i fält. Är fältet 8 ha sätts två set om fyra fällor ut. Är fältet långsmalt placeras ett set om fyra fällor i varje ände. Fällorna placeras med undersidan i västlig riktning, så solen skinner mot fällan under eftermiddagen som är den tid då flugorna flyger från buskage in i fältet för att lägga ägg.

Fällorna placeras i första bädden bara 50 cm från fältkanten i områden med buskage och trädrådar. Fällorna läses av en gång i veckan och fångsten klassades i fyra klasser, baserat på antal fångade flugor, Tabell 1. För respektive klass finns en åtgärdsrekommendation som är baserad på bekämpning med dimetoat.
Tabell 1. Klassning av fångst baserat på antal fångade flugor samt åtgärdsrekommendationer baserade på bekämpning med dimetoat.

<table>
<thead>
<tr>
<th>Klass</th>
<th>Antal flugor/fälla/vecka</th>
<th>Åtgärd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1-4</td>
<td>Ingen fara, minimal risk</td>
</tr>
<tr>
<td>1</td>
<td>5-10</td>
<td>Spruta kanterna, 10-20 m</td>
</tr>
<tr>
<td>2</td>
<td>10-30</td>
<td>Problem, spruta dimetoat.</td>
</tr>
<tr>
<td>3</td>
<td>Minst 30-50</td>
<td>Riktigt illa, spruta dimetoat och upprepa efter två dagar.</td>
</tr>
</tbody>
</table>

Bekämpning utförds med dimetoat (0,5 Perfecthion/ha, dimetoat 400 g/l) på eftermiddagen (16.00-19.00) då flugorna befinner sig i fältet för äggläggning.

Fällorna bytas ut efter bekämpning för att veta hur många flugor som tillkommit från bekämpning fram till nästa avläsning.

Tröskelvärdet varierar med region, tid på säsongen och om det finns ett högriskfält i närheten. Med högrisk fält menar man t.ex. om ett fjolårs morotsfält ligger i närheten eller fält med tidiga morötter där en första generation kan ha uppförökat (g).

Inför säsongen 2013 är det även för Nederländerna osäkert om en dispens för dimetoat (Danadim Progress) blir godkänd. De hoppas på ett godkännande för Chlorantraniliprole (Coragen)(h).

Betning

Vid betning behandlas fröet med ett biologiskt eller kemiskt betningsmedel som skyddar fröet och plantan mot insekts- eller svampangrepp. Hur länge effekten från betningen varar beror på vilket typ av produkt som används.

Insektsbetning på morotsfrö i Sverige är hittills relativt ovanlig om inte problem med morotsbladloppa finns. I Europa är det vanligare med insektsbetning då problem med första generationens morotsfluga har varit betydligt större. Insektsbetning med tefluthrin (Force) har tidigare använts och ersätts av tiametoxam (Cruiser) (i). Frö betat med betningsmedel godkänt inom EU får importeras till Sverige. Tiametoxam har en svensk registrering i foder och sockerbetro.

Nederländska försök visar att betning med tiametoxam (Cruiser) hade effekt även 14 veckor efter sådd jämfört med obehandlat (10). Syngenta som representerar produkten rekommenderar att börja använda annan bekämpning ca 10-11 veckor efter sådd (21). Vid EPPO Workshop of Carrot fly i Lelystad 2009 påtalas att effekten från betning överlag endast varar i 6-8 veckor och bara mot första generationen.
Betning av morotsfrö ska användas som en del av bekämpningsstrategin på morötter sådda 3-4 veckor innan första flygning (I.)

Del 1. Vidareutveckling av befintlig prognosteknik

Demo med vinklade gula klisterskivor

I flera länder i Europa sätts gula klisterfällor upp med en lutning på 45°. Flera försök har utförts bl a i Holland av Albert Ester, som visat på att fler flugor fångas med 45 graders lutning jämfört om fällorna sätts vertikalt (a).

![Bild 5. Placering av gula klisterskivor i fält, traditionellt vertikalt och i 45° lutning.](image)

Resultatet av testet med vinklade gula klisterfällor visar att på båda platserna fångades fler flugor med vinklade fällor i början av avläsningsperioden, Figur 3 och 4. Senare under perioden är skillnaderna inte lika tydliga. Då tillgången på bekämpningsmedel förändras kan det bli viktigare att fånga de allra första flugorna. Detta visar också försök gjorda i Holland (a).
Figur 3. Diagram visar antalet fångade flugor per dag och fälla i Färlöv, Kristianstad

Figur 4. Diagram visar antalet fångade flugor per dag och fälla på lokalen utanför Löddeköpinge.

Nuvarande ”Daggradsmodellen”

I viss utsträckning praktiseras ”daggradsmodell” för att beräkna upptagningstidpunkt för grödan även i Europa (j, h).

Utveckling av ”daggradsmodell” - skördeprognos

För att få information om när 500 daggrader troligast uppnås kan man använda tidigare års medeltemperaturer och få ett bra beslutsunderlag. Denna beräkningsmodell används inom industrin för att beräkna fram skördedatum för bland annat ärtor och spenat men är idag inte kommersiellt tillgänglig.

Med hjälp av Torbjörn Leukovius, på SLU-Fältforsk, har vi utvecklat den befintliga daggradsmodellen och tagit fram ett förslag till beslutstöd, Figur 5.

Genom att knappa in aktuellt datum för morotsflugans flygning för det specifika fältet och välja aktuell väderstation för området, visas när i tid ett angrepp kan bli aktuellt. Det finns då möjlighet för lantbrukaren att ta ställning till om grödan kan skördas innan detta datum eller välja att utföra en bekämpning.

Figur 5. Exempel: ovan har det förflutit 422 daggrader för väderstationen Alnarp sedan aktuellt datum för morotflugans flygning (startdatum). Om fältet inte är bekämpat kan det vara aktuellt att planera upptagning inom kort.

Se bilaga 1.
Del 2. Klimatbaserad prognosmodell för att beräkna när första generationens morotsfluga börjar flyga

Kunskap om skadegörarens livscykel samt insamling av klimatdata gör det möjligt att i olika simuleringsmodeller avgöra när skadegöraren blir aktiv på våren och när andra generationen förväntas dyka upp. Modeller kan baseras på dagligen insamlad data eller på tidigare års klimatdata.

https://portal.mtt.fi/portal/page/portal/kasper/puutarha/puutarhapalvelut/porkkanakarpasennuste

SWAT-modellen (Tyskland)

Jordtemperaturen mäts på fem cm djup eftersom huvuddelen av pupporna finns i det översta jordlagret. Det är dock stor skillnad mellan temperaturen på två centimeter och fem centimeter vilket gör att jordtemperaturen kan vara en osäkerhet i prognosen. För att utesluta felkällor kan modellen baseras endast på data för temperatur och vind.

Vid simulering av morotsflugans flygning bör man även följa dessa med gula klisterskivor. När flugor fångats noteras detta i SWAT-modellen och en mer precis prognos över när andra generationen förväntas påbörja sin flygning erhålls.

UK-Modell, MORPH

Slutsats kring simuleringsmodeller och daggradsmodellen

Efter att ha tittat på dessa simuleringsmodeller, skulle det vara intressant att testköra SWAT-modellen och utvärdera metoden i relation till prognosen med gula klisterskivor. Vi berömmer att det skulle vara möjligt att börja i liten skala redan

Vid EPPO Workshop of Carrot fly i Lelystad 2009 konstaterades att simuleringsmodellerna är ett sätt att veta när det är dags att börja observera flugan i fält. Det är också ett bra sätt att förstå vad som händer i fält och följa flugans utveckling, samt ett kostnadseffektivt sätt att simulera och förebereda åtgärder t ex när skörd ska utföras, när man täcka grödan osv (I).

Förslag på beslutsvägar och val av åtgärd

Följande frågeställningar kan besvaras för att avgöra om ett fält är hög- eller lågriskfält.

- Hur intensiv är odlingen i området?
- Finns det högriskfält inom en omkrets av 1 km?
- Finns halmade fält i området?
- Finns tidig produktion av morötter i området med risk att uppföröka första generationen?
- Till vilken typ av marknad produceras grödan, industri alt direkt konsumtion?
- Vilka förebyggande åtgärder har praktiserats?
- Är utsädet insektsbetat mot morotsflugan?

"**Lågriskfält"**

Är bedömningen att odlingen är placerad inom ett ”lågriskområde” är det kanske tillräckligt att sätta upp vertikala fällor. Tex 2-3 fällor per fält, 1-5 m från fältkanten intill vegetation och avläsning 1 gång per vecka. När bekämpningströskeln är uppnådd (0,2 flugor per dag och fälla) görs en bedömning med hjälp av den uppdaterade daggradsmodellen: kan skörd utföras för hela eller delar av fältet innan
tredje larvstadiet hinner göra skada på huvudroten (500 daggrader) eller måste bekämpning av hela eller delar av fältet ske?

"Högriskfält"

är bedömningen att odlingen är placerad inom ett "högriskområde". Placera ut 3 fällor per fält, är fältet över 8-10 ha sätt ut 2 set om 3 fällor per fält, vid större fält öka antalet set per fält. Placera fällorna 1-2 m från fäktkanten och intill vegetation, välj om möjligt vinklade fällor (45 grader). När första flugorna fångats eller bekämpningströskeln är uppnådd görs precis som för lågriskområdet en bedömning med hjälp av den uppdaterade daggradsmodellen om skörd kan utföras för hela eller delar av fältet innan tredje larvstadiet hinner göra skada på huvudroten (500 daggrader) eller om bekämpning måste ske på delar eller hela fältet?

Efter varje vecka avläsning av gula klisterfällor görs en ny bedömning av huruvida morötterna kan skördas enligt daggradsmodellen (500 daggrader) eller om en kemisk bekämpning ska utföras.

Bekämpningströskel, preparat, timing och intervall

Vid ett lågt antal fångade morotsflugor, och i övrigt blåsigt fält, bekämpa endast 10-20 m in längs fäktkanten eftersom morotsflugan oftast rör sig längs fältkanterna. Se figur 2.
Den största risken i fält med övervintrande morötter täckta med halm är larverna som utvecklas från ägg som är lagda i månadsskiftet juli-augusti. Det är alltså som viktigast att lyckas med bekämpningen i början av andra generationen.

Nya och gamla växtskyddspreparat

Försök i Frankrike har visat att även Danadim progress som är systemiskt inte har haft tillfredställande effekt vid höga fångster av morotsflugan. Detta har också noterats i Sverige de senaste åren. De franska försöken visade också att den nya produkten Coragen (chlorantraniliprole) hade bra effekt på morotsflugan. Denna produkt har under 2012 provats i fältförsök i Sverige och Danmark, men uppfyllde så här långt inte förväntningarna. Vid höga fångster av morotsflugan har angreppen legat i nivån strax under bekämpning med Karate (30 % skador) trots att bekämpning utfördes varje vecka från det att flugorna började flyga. Nya försök ska genomföras under 2013 och då läggas in i en strategi tillsammans med de andra godkända pyreteroider.
Diskussion

I Sverige har vi fortfarande fördelar av vårt klimat. Vinter med tjäle i marken reducerar en hel del skadegörare som t.ex. morotsflugan. I övriga Europa har de generellt sett större problem med morotsflugan p g a varmare klimat och intensivare odling. I Sverige är det speciellt i områden med intensiv morotsodling samt i områden med lagring av morötter under halm som man under senare år sett ökade problem med morotsflugan. Forskning pekar på att lagring av morötter under halm är en viktig parameter till varför populationen ökar. Varma höstar har en flygningstopp av morotsflugan noterats, detta kan antas vara en tredje generation. Vid ett eventuellt varmare klimat i framtiden kan denna generation få en större betydelse, speciellt i områden med halmade morötter där förutsättningarna för att övervintra under halmen är mycket goda.

Daggradsmodellen har utvecklats inom projektet så att man nu även får information om när skörd bör utföras för att förhindra att larverna gör skada på roten. Anpassningen av modellen har gjort att det nu är möjligt att bedöma om morötterna hinner skördas i tid eller om en kemisk bekämpning ska utföras. Torbjörn Leuchovius har tagit fram ett förslag och vi har framfört förslag på förändringar för att göra modellen mer användarvänlig.

Det finns också åtgärder som kan praktiseras inom fältet. Studera fältets arrondering och vegetation längs kanterna och planera sådd, skörd och bekämpning efter detta. Det är längs lähäcker och buskage som morotsflugan är vanligast och flyger in i fältet.

En tydlig slutsats från projektet är att det finns en stor variation i Europa i hur morotsflugan bevakas med gula klisterskivor. Antalet fällor per fält, tröskelvärden, antal avläsningar per vecka, placering i fält samt avstånd från fältkant varierar. Flertalet länder är dock överens om att fällorna bör ha en lutning på 45 grader för att bäst attrahera flugan. De andra parametrarna som nämns ovan är oftast anpassade utifrån hur högt trycket av flugor är, riskfält i närheten, till vilken marknad morötterna produceras samt vilka preparat som är tillgängliga. Hur ska vi då dra nytta av denna kunskap i Sverige för att ha en så bra strategi som möjligt för kontroll av morotsflugan?

Ett mycket enkelt sätt att prognostisera första flugan är att sätta upp fällor i övervintrade morotsfält med halm. När första flugan fångas där, vet man att flugorna är på gång och att man bör vara observant i andra fält.

Dagens bekämpningströskel på 0,2 flugor per dag och fälla baseras på tillgång av systemiskt bekämpningsmedel. Om det framöver endast kommer finnas tillgång till kontaktverkande pyretoilder (Karate och Mavrik) för bekämpning av morotsflugan, vilken bekämpningströskel ska då användas? Det är då flugan som bekämpas och inte som tidigare larven. I England sprutar man så fort man noterat flugor på klisterskivan.

Timingen för bekämpning blir också viktigare. För bästa resultat bör flugan bekämpas på eftermiddagen mellan 15.00 och 18.00, eftersom det är då flugan är aktiv och flyger från buskaget in i fältet och lägger sina ägg på marken intill rothalsen.
Källor

Litteratur

Personliga meddelanden

b. Hannu Ojanen, MTT Agrifood, Finland. 2013-02-07, skriftligen via e-post.
c. Irmeli Markkula, MTT Agrifood Research Finland, 2013-02-04, skriftligen via e-post.
e. Maarten de Korte. De Groene Vlieg. 2013-02-18, muntlig och via e-post
g. Martin Hommes. JKI, Tyskland, 2012-05-23, muntlig.
h. Per Andersson. Olssons frö AB. 2012-11-02, muntlig och skriftlig via e-post.
i. Rosemary Collier. HRI Warwick University. 2012-04-24, muntlig.
 Results from the working groups, Final conclusions.

II. State of art regarding carrot fly control in practice and possibilities in the future for Western Europe

III. The biology and life cycle of the carrot fly (Psila rosae)

Bilaga 1

Utveckling av daggradsmodell

Materialet som presenteras i denna bilaga har tagits fram tillsammans med Torbjörn Leukovius, SLU-fältforsk.

När kan man räkna med att morotsflugans larvangrepp sker?

Växtskydd Prognoser: Morotsfluga

Prognoser för morotsfluga uppdateras under sensommaren och hösten. Temperatursamma över tre grader, södra och mellersta Sverige. Tillgängligt från 1 juli till 1 november

Referensdatum (YYYYMMDD) 20120802
Skutdatum (YYYYMMDD) 20120901 (ej senare än igår)
Valj Väderstation Alnarp/Lantmät
Startdatum och slutdatum skall vara under samma år!

Regional information från Jordbruksverkets växtskyddscentraler

Din valda väderstation visas genom gulmarkering i tabellen som kommer upp.
I högra halvan av bilden visas en sammanställning för tidigare år för respektive väderstation. Dagarna inom tidsintervallet ("Tidigast/Senast") visar de dagar då summan 500 uppnåtts under tidigare säsonger ("År/intervall").

Genom denna information kan sedan ett beslut tas om fältet ska bekämpas eller om grödan kan skördas innan angrepp sker.

I vänstra halvan av bilden i kolumnen "Differens" visas antal aktuella daggrader sedan inmatat startdatum.

Antalet verkliga daggrader kan sedan följas precis som tidigare beslutstödsversioner genom att regelbundet gå in och skriva in startdatum (referensdatum) samt slutdatum.

Exempel: I tabellen ovan har det förflutit 422 daggrader för väderstationen Alnarp sedan aktuellt datum för morotsflugans flygning (startdatum). Om fältet inte är bekämpat kan det vara aktuellt att planera upptagning inom kort.

Förslag till förbättringar

Funderingar kring förändringar.
Döpa om alt. skriva in förklaringar för följande punkter.

- Referensdatum (startdatum, datum för morotsflugans flygning, fångst på klisterskivan)
- Slutdatum (föregående dags datum, bör förklaras)
- Differens på tabellsidan ??? = antal daggrader
- Dygnsgrader = daggrader?

Vad ska visas i tabellen, övriga funderingar

- Daggrader som förflutit
- Vilka stationer är tillförlitliga och inte, servas osv?
- Antal mil från stationen? 5 eller 10 mil?
Bilaga 2.

Sammanställning av olika länders strategier för att kontrollera morotsflugan.

Nederländerna

Sådatum har stor effekt på antalet bekämpningar som behövs. Fält sådda före första flygningen har fler flugor i andra generationen än fält sådda efter första flygningen. (IV).

Bekämpningströskeln är indelad i klass 0-3, som varierar efter om risken är hög eller låg. Läs mer under rubriken De Groene Vlieg.

Storbritannien

Betning (teflutrin) och bekämpning med pyretroid (lambda-cyhalothrin). Bekämpning med lambda-cyhalothrin har visat sig speciellt effektiv. Ingen resistens har noterats trots att denna strategi har pågått i över 10 år. Man är medveten om att resistens kan bli ett problem och nya aktiva substanser testas. Biologisk bekämpning testas också samt vertikala barriärer med nät och biologisk kontroll med predatorer tex *Atheta coriaria*.

Bekämpningströskel används inte utan bekämpning sker när första flugan fångas (j)

Frankrike

I Frankrike har man 3 generationer i norra delen av landet och 2 generationer i södra delen av landet, en vår- och en höstgeneration. Under sommarmånaderna juli – augusti blir det så varmt att det påverkar morotsflugans utveckling och inga puppor kläcks.

Villeneuve (22) menar att gula klisterskivor är ett bra sätt att fånga flugor och bedöma bekämpningsbehovet för första och andra generationens morotsfluga. Men har sina begränsningar eftersom för den tredje generationen blir fällorna mindre attraktiva och då är det svårare att göra en bedömning.

I Frankrike använder man samma simuleringsmodell som i Tyskland, SWAT, fast något anpassad efter franska förhållanden. Villeneuve upplever att den ger tillförlitliga riskbedömningar och prognoser. (22).

Bekämpningströskel; 0,15 flugor per fälla och vecka, 1 fluga per fälla och vecka (5).
Tyskland

I Tyskland har morotflugan 2-3 generationer per år. Ett resultat av klimatförändringarna är att morotsflugan verkar dyka upp tidigare på året. Tidigare kom första flygningen i första halvan av maj medan man på senare år ser den redan i andra halvan av april. Utvecklingen av en tredje generation ser ut att bli vanligare på sikt (13).

I Tyskland har man tagit fram en simuleringsmodell, SWAT, för att prognosticera när morotsflugan börjar flyga. Man använder också gula klisterskivor för att mäta fångster i fält. Simuleringsmodellen har använts i ca 15 år och förbättrats efterhand (h).

Det finns möjligheter att minimera angreppsrisken utan kemiska preparat genom att täcka med insektnät. Dock en väldigt dyr metod. Man har även provat vertikala nät (13).

Bekämpningströskel: första generationen 10 flugor per fälla och vecka, andra generationen fem flugor per fälla och vecka, men också en fluga per fälla och vecka (h).

Norge

Bioforsks rekommendation är att fällorna placeras 5-10 meter från fältkanten längs med busk och trädridåer. Fällorna bör kollas 2-3 ggr per vecka fram till att första flugan fångats. Då utförs vanligen också första bekämpningen om morotsplantan har nått två bladstadiet. Följande eventuella bekämpningar anpassas efter antalet fångade flugor per vecka. Bekämpningströskeln 4-5 flugor per vecka användes när Basudin var godkänt (14) nu finns bara Karate (lambda-cyhalothrin) godkänt och används så snart nya flugor fångats på klisterskivorna dock är endast 2 behandlingar godkänt, precis som i Sverige. I ekologisk odling täcker man med insektnät. I morotsodlingen har man även problem med morotsbladloppa varför täckning med insektnät används i stor utsträckning då det är begränsad effekt av pyretroid samt antalet tillåtta behandlingar är otillräcklig (b).

Danmark

I Danmark har man 1-2 generationer morotfluga. Första generationen är vanligen inte något problem eftersom de tidiga morötterna täcks med plast eller väv. Men det finns områden där problemet finns. I Danmark används gula klisterskivor för att veta...

Lambda-cyhalotrin (Karate) är det enda godkända kemiska preparatet.

Bekämpningströskeln är 0,2 flugor per dag och fälla (e).

Finland

I Finland har man precis som i Sverige bara en generation i norra delen och två generationer i södra delen av landet. De använder gula klisterskivor för att mäta fångster i fält. Rekommendationen är 3-5 fällor per fält. De har flertalet pyretroider samt dimetoat godkänt (d).

MTT i Finland till handahåller en prognos på internet under säsongen. Prognosen baseras på klimatdata och SAS-programmet som de använder prognostiserar morotsflugan för de kommande fem dagarna. Detta hjälper rådgivare och odlare att se hur morotsflugans aktivitet förändras under tid (17).

Bekämpningströskel; 5 flugor per fälla och vecka (d).
KUNSKAP FÖR LANDETS FRAMTID